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SUMMARY

This article presents the effect of the grid skewness on the ranges of the underrelaxation factors for
pressure and velocity. The effect is reflected by the relationship between the numbers of iterations
required and the ranges of the underrelaxation factors for a converged solution. Four typical cavity flow
problems are solved on non-staggered grids for this purpose. Two momentum interpolation practices
namely, practice A and practice B, together with SIMPLE, SIMPLEC and SIMPLER algorithms are
employed. The results show that the ranges of the pressure underrelaxation factor values for convergence
exist if the SIMPLE algorithm is used, while no restrictions are observed if the SIMPLEC algorithm is
used. From the curves obtained using the SIMPLER algorithm, the ranges of those based on practice B
are wider than those based on practice A. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a companion article [1], the contravariant velocity fluxes were chosen as the dependent
variables on the non-staggered, non-orthogonal grids. The discretization equations for the
Navier–Stokes equations in general curvilinear co-ordinates retain a strongly conservative
form. The momentum interpolation was introduced to avoid the splitting of the pressure field.
In order to carry out the momentum interpolation, two different practices, namely, practice A
and practice B, were presented to calculate the values of the contravariant velocity fluxes at the
faces of the control volumes. In each practice, two cases of the momentum interpolation
formulations, with and without the velocity underrelaxation factor, are considered. The
SIMPLE [2], SIMPLER [3] and SIMPLEC [4] algorithms were employed to solve the
governing equations. Each of these three algorithms was combined with each of the cases in
each practice. The purpose of this work is to study the effect of the grid non-orthogonality on
the ranges of the underrelaxation factors. These ranges are indicated on the plots of the
numbers of the iterations required for convergence versus the ranges of the underrelaxation
factors. The typical two-dimensional lid-driven cavity flows as shown in Figure 1 are selected
for this purpose. In the present study, the non-orthogonal terms in the pressure-correction
equation are omitted.
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Previously, Peric [5] studied the effect of the grid non-orthogonality on the convergence
behavior for the two-dimensional lid-driven cavity flows with b=90, 60, 45 and 30° respec-
tively. Peric compared the results obtained from the simplified pressure-correction equation
(the non-orthogonal terms are neglected), in which five nodes for 2D flows and seven nodes for
3D flows are used in the coefficient matrix, with those obtained from the full one, in which
nine nodes for 2D flows and 19 nodes for 3D flows are used in the coefficient matrix. Peric
found that it is more efficient to use the simplified pressure-correction equation than its full
form if the grids are not severely non-orthogonal, and it is necessary to use the full
pressure-correction equation if the grids are significantly non-orthogonal. The simplified
version either does not give a converged solution at all or the convergence is too slow if the
grids are severely non-orthogonal. For a given velocity underrelaxation factor, the range of the
pressure underrelaxation factor that can be used for a converged solution becomes narrower,
as the skewness of the non-orthogonal grid increases if the simplified pressure-correction
equation is employed. However, this phenomenon does not occur if one uses the full
pressure-correction equation. For a given skewness of the grid, the range of the pressure
underrelaxation factor for a converged solution gets narrower as the velocity underrelaxation
factor increases. This applies to both results obtained using the simplified and the full
pressure-correction equations. But the range of the pressure underrelaxation factor gets narrow
much faster if the simplified pressure-correction equation is used than that if the full one is
used. Recently, Cho and Chung [6] proposed a new treatment method for non-orthogonal
terms in the pressure-correction equation in order to enlarge the ranges of the values of the
pressure underrelaxation factor for convergence. In this new treatment, the non-orthogonal
terms in the full pressure-correction equation are decomposed into explicit and implicit terms
and five nodes for 2D flows and seven nodes for 3D flows are used in the coefficient matrix
for the pressure-correction equation. Although this treatment is superior to the simplified
treatment if the grids are significantly non-orthogonal, its pressure-correction equation is more
complex than the simplified one. In both studies [5,6], the SIMPLE algorithm was used to
solve the governing equations on 20×20 control volumes or grids with Re=100. The analyses
in [5,6], in the investigators’ words, are valid for both staggered and non-staggered grid
arrangements.

In the present research, four cases of the cavity flows are studied, namely, b=90, 60, 45 and
30°. Reynolds number based on the definition of (ruLL/m) is set to be 100 in all cases. The
calculation is carried out on the uniform 20×20 grids. The convergence is thought to be

Figure 1. Geometry of the lid-driven cavity flow.
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achieved when the sum of the absolute values of the residuals in all the equations is less than
10−4. In this article, some new discoveries regarding the effect of the grid non-orthogonality
for the lid-driven cavity flows are presented. First, the results using the SIMPLE algorithm are
shown for four cases of the cavity flows using the two momentum interpolation practices with
and without aU i. To the best of the authors’ knowledge, there are no reports on the study of
the relationship between the numbers of iterations and the ranges of the underrelaxation
factors using the SIMPLEC and SIMPLER algorithms. Next, the results using these two
algorithms are given. Equations (41) and (43) and Equations (44) and (45) in the companion
article [1] are referred to as the two momentum interpolation practices with and without the
velocity underrelaxation factor, aU i respectively. Some concomitant explanations regarding aU i

can also be found in [1].

2. RESULTS OF CALCULATIONS

Figures 2–45 show the convergence properties for the cavity flows. It is noted here that the
legends used in Figures 3–45 are the same as those in Figure 2.

Figures 2–21 show the numbers of iterations required for convergence by using the SIMPLE
algorithm [2] as a function of the pressure underrelaxation factor, ap, with the velocity
underrelaxation factor, aU i, as a parameter. Figures 2–6 are for b=90°, Figures 7–11 for
b=60°, Figures 12–16 for b=45°, while Figures 17–21 for b=30°.

First of all, the convergence can always be reached for both practices, but very slowly if aU i

is very small. Study of the behavior of the grid non-orthogonality for aU iB0.5 is not necessary
and valuable because ap can reach 1.0 for both practices if aU iB0.5. Also, the use of very
small values for aU i is not practical since the convergence is too slow. On the other hand, using
aU i=1.0 results in a diverged solution for both practices. In the present study, aU i value is set
to be 0.5, 0.6, 0.7, 0.8 and 0.9 as a parameter, and ap=0.1 is chosen as the starting point for
each curve. For practice A, the convergence cannot be obtained for aU i=0.9 in all four cases
of the cavity flows. Therefore, the convergence behaviors are not plotted in the corresponding
figures for this practice when aU i=0.9. Practice B does not have this difficulty. For practice
A without aU i and practice B with and without aU i , ap can reach 1.0 for aU i50.6 when
b=90, 60 and 45°, and for aU i50.5 when b=30°. The aU i value for obtaining a full range
of ap value decreases as the skewness of the non-orthogonal grid gets higher (b decreases). For
practice A with aU i, such aU i values are lower than those for practice A without aU i, and
practice B with and without aU i.

As it has been expected, the convergence rate depends strongly on the underrelaxation
factors ap and aU i, and the grid skewness, which is reflected by the angle b. If aU i value is
given, the range of ap values becomes narrower as the grid skewness gets higher. This
phenomenon is not obvious for the results based on practice A, but can be seen clearly from
the results based on practice B. If the grid skewness is fixed (b is fixed), the range of ap values
becomes narrower as aU i increases. The number of iterations required for convergence
decreases as the grid skewness decreases. This is especially obvious for small ap values. On each
curve, there is an optimum ap value for getting a least number of iterations required for
convergence, this value may not be 1.0. It is 1.0 when a full range of ap values exists, except
for practice A with aU i. It is obvious that the range of ap values obtained using practice B is
wider than that obtained using practice A. In practice A, this range based on the case of
without aU i is wider than that based on the case of with aU i. There is almost no difference
between the two cases for practice B.
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Figure 2. Convergence properties for SIMPLE: b=90°, aU i=0.5.

Figure 3. Convergence properties for SIMPLE: b=90°, aU i=0.6.

Figure 4. Convergence properties for SIMPLE: b=90°, aU i=0.7.
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Figure 5. Convergence properties for SIMPLE: b=90°, aU i=0.8.

Figure 6. Convergence properties for SIMPLE: b=90°, aU i=0.9.

Figure 7. Convergence properties for SIMPLE: b=60°, aU i=0.5.
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Figure 8. Convergence properties for SIMPLE: b=60°, aU i=0.6.

Figure 9. Convergence properties for SIMPLE: b=60°, aU i=0.7.

Figure 10. Convergence properties for SIMPLE: b=60°, aU i=0.8.
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Figure 11. Convergence properties for SIMPLE: b=60°, aU i=0.9

Figure 12. Convergence properties for SIMPLE: b=45°, aU i=0.5.

Figure 13. Convergence properties for SIMPLE: b=45°, aU i=0.6.
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Figure 14. Convergence properties for SIMPLE: b=45°, aU i=0.7.

Figure 15. Convergence properties for SIMPLE: b=45°, aU i=0.8.

Figure 16. Convergence properties for SIMPLE: b=45°, aU i=0.9.
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Figure 17. Convergence properties for SIMPLE: b=30°, aU i=0.5.

Figure 18. Convergence properties for SIMPLE: b=30°, aU i=0.6.

Figure 19. Convergence properties for SIMPLE: b=30°, aU i=0.7.
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Figure 20. Convergence properties for SIMPLE: b=30°, aU i=0.8.

Figure 21. Convergence properties for SIMPLE: b=30°, aU i=0.9.

Figure 22. Convergence properties for SIMPLEC: b=90°, aU i=0.5.
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Figure 23. Convergence properties for SIMPLEC: b=90°, aU i=0.6.

Figure 24. Convergence properties for SIMPLEC: b=90°, aU i=0.7.

Figure 25. Convergence properties for SIMPLEC: b=90°, aU i=0.8.
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Figure 26. Convergence properties for SIMPLEC: b=90°, aU i=0.9.

Figure 27. Convergence properties for SIMPLEC: b=60°, aU i=0.5.

Figure 28. Convergence properties for SIMPLEC: b=60°, aU i=0.6.
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Figure 29. Convergence properties for SIMPLEC: b=60°, aU i=0.7.

Figure 30. Convergence properties for SIMPLEC: b=60°, aU i=0.8.

Figure 31. Convergence properties for SIMPLEC: b=60°, aU i=0.9.
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Figure 32. Convergence properties for SIMPLEC: b=45°, aU i=0.5.

Figure 33. Convergence properties for SIMPLEC: b=45°, aU i=0.6.

Figure 34. Convergence properties for SIMPLEC: b=45°, aU i=0.7.
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Figure 35. Convergence properties for SIMPLEC: b=45°, aU i=0.8.

Figure 36. Convergence properties for SIMPLEC: b=45°, aU i=0.9.

Figure 37. Convergence properties for SIMPLEC: b=30°, aU i=0.5.
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Figure 38. Convergence properties for SIMPLEC: b=30°, aU i=0.6.

Figure 39. Convergence properties for SIMPLEC: b=30°, aU i=0.7.

Figure 40. Convergence properties for SIMPLEC: b=30°, aU i=0.8.
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Figure 41. Convergence properties for SIMPLEC: b=30°, aU i=0.9.

Figure 42. Convergence properties for SIMPLER: b=90°.

Figure 43. Convergence properties for SIMPLER: b=60°.
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Figure 44. Convergence properties for SIMPLER: b=45°.

Figures 22–41 show the number of iterations required for convergence by using the
SIMPLE algorithm [3] as a function of the pressure underrelaxation factor, ap, with the
velocity underrelaxation factor, aU i, as a parameter. Figures 22–26 are for b=90°, Figures
27–31 for b=60°, Figures 32–36 for b=45°, while Figures 37–41 for b=30°.

Convergence can always be reached for both practices when aU i and ap are very small and
cannot be obtained when aU i=1.0 for both practices. Thus, curves using the SIMPLEC
algorithms are formed by connecting 10 points, namely ap=0.1, 0.2, 0.3, . . . , 1.0, and the
same aU i values as those used in the case of the SIMPLE algorithm are chosen to be parameter
values. Since the convergence cannot be obtained for aU i=0.9 using practice A, the conver-
gence behaviors obtained using practice A are not plotted in these figures for all the four cases
of the cavity flows when aU i=0.9. There is no limit to the range of ap values for convergence.
That is, the range of ap values does not become narrower as aU i increases or b decreases
provided that the curve does exist (it does not exist for practice A when aU i=0.9). For practice
B, the optimum ap value on each curve is always 1.0. But for practice A, this value may not

Figure 45. Convergence properties for SIMPLER: b=30°.
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be 1.0, especially for practice A with aU i. Still, the number of iterations required for
convergence is less for a large b value than that for a small b value. Results obtained from
the two cases, with and without aU i, for practice B are almost identical. As a whole, curves
based on practice A without aU i are closer to those based on practice B than those based on
practice A with aU i if such curves exist. Apparently, practice B behaves better than practice
A.

Figures 42–45 show the number of iterations required for convergence by using the
SIMPLER algorithm [4] as a function of the velocity underrelaxation factor aU i. Figure 42 is
for b=90°, Figure 43 for b=60°, Figure 44 for b=45°, while Figure 45 for b=30°. These
figures give some general trends of the convergence characteristics. In the SIMPLER al-
gorithm, no pressure underrelaxation factor is needed to correct the pressure field. The
pressure is obtained by solving a Poisson-like equation based on the continuity equation.

Each curve starts at aU i=0.5. Convergence for both practices when aU iB0.5 can of
course be achieved, but more iterations are needed. The number of iterations decreases as aU i

increases provided aU i does not exceed a certain value, beyond which a converged solution
cannot be obtained. This value for practice A is smaller than that for practice B. Results
obtained from the two cases of practice B are almost identical. Apparently, practice B is
better than practice A.

Finally, in each solution algorithm (SIMPLE, SIMPLEC and SIMPLER), more iterations
reflect more computing time.

3. CONCLUSIONS

In this article, the convergence characteristics of the two-dimensional cavity flows using the
two momentum interpolation practices and the three SIMPLE series algorithms (SIMPLE,
SIMPLEC and SIMPLER) were presented. In each of the two practices, two situations, i.e.
with and without velocity underrelaxation factors in the momentum interpolation formula-
tions, are considered. The angle between the side wall of the cavity and the horizontal line,
b, was set to be 90, 60, 45 and 30°. The velocity underrelaxation factor, aU i was set to be
0.5, 0.6, 0.7, 0.8 and 0.9.

For both practices, no converged solution can be reached using the three SIMPLE series
algorithms when aU i=1.0. aU i=0.9 is too high for the convergence using practice A to be
achieved. For practice B, aU i=0.9 leads to converged solutions. For the results obtained
using the SIMPLE algorithm, a range of the ap values for convergence exists when aU i is
high for both practices. The range ap values gets narrower as b decreases or aU i increases.
For the results obtained using the SIMPLEC algorithm, there is no restrictions on the ap

values, even if the grid skewness is highly non-orthogonal (b=30°) and a high aU i value
(aU i=0.8 for practice A and aU i=0.9 for practice B) is used provided the convergence can
be obtained. This means that the full pressure-correction equation or any its modified forms
are not necessary in order to obtain a wider range of ap values, and the simplified pressure-
correction equation is capable of achieving this goal. For the results obtained using the
SIMPLER algorithm, the critical aU i value for practice A, beyond which no convergence can
be obtained, is smaller than that for practice B. Little difference between the curves with and
without aU i value using practice B can be observed. This means that whether the velocity
underrelaxation factor appears in the momentum interpolation formulation for practice B
does not affect the convergence rate. Comparatively, practice A without aU i is superior to
practice A with aU i. Practice B gives better convergence behaviors than practice A.
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APPENDIX A. NOMENCLATURE

cavity lengthL
Re Reynolds number

lid velocityuL

pressure underrelaxationap

velocity underrelaxation factoraU i

b angle between the cavity side wall and the horizontal line
dynamic viscositym

r density
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